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SUMMARY 
Recent results on extremum principles for various nonlinear boundary value problems are applied to heat transfer 
problems involving space radiators such as fins and other parts of spacecraft. The results are illustrated by obtaining 
quite accurate variational solutions for such problems involving the fourth-power law of radiation. 

1. Introduction 

In a recent series of publications [1, 2, 3, 4], dual extremum principles have been developed for a 
wide class of linear and nonlinear boundary value problems, including a variety of boundary 
conditions. In many cases these principles provide upper and lower bounds to a basic functional 
or potential, and the theory is therefore particularly valuable when the basic potential represents 
a physical quantity of interest such as energy, capacity, or absorption probability [cf. 2]. 
In some problems, especially nonlinear ones, attention is centred on obtaining an approximate 
solution to the boundary value problem itself, and dual extremum principles, if they can be 
found, provide the basis of variational methods which can lead to an accurate variational solu- 
tion. 

The purpose of this paper is to present dual extremum principles which are relevant to non- 
linear problems in heat transfer. The results are illustrated by two applications, one concerning 
a nonlinear fin problem with radiating tip condition, and the other concerning the temperature 
distribution on the surface of a thin-walled spherical spacecraft. Each of these problems involves 
the fourth-power law of radiation. 

To make the paper reasonably self-contained we begin with a brief summary of the main 
results in the theory of dual extremum principles [2, 4]. 

2. A Class of  Problems 

It is convenient to consider boundary value problems with equations of the form [1, 2, 4] 

T* Tq~ =f(q~) in V (2.1) 

with boundary conditions 

art: p = arq~ B on S 1 

a ' T 9  = a*UB o n  S 2 

a*T~o=b(9) on S 3 

(2.2) 

(2.3) 

(2.4) 

Here V is some region of space and $1 + $2 + $3 = S makes up the boundary of V. The linear 
operator T has an adjoint T* defined by the relation [cf. 2] 

fvUTCpdV = fv(T*u)q~dV + isUaTq)dS. (2.5) 

The linear operator aT restricted to S has an adjoint a* defined by 

Journal of Engineering Math., Vol. 6 (1972) 331-339 



332 N. Anderson, A. M. Arthurs 

.is UarOdS = .Is (a*u)odS . (2.6) 

In equations (2.1)-(2.4)the functions OB and uB are prescribed functions and f(9)  and b (O) are 
known differentiable functions of q~. An example of operators T and T* which satisfy (2.5), and 
which will be used later in the paper, is provided by 

d d 
T =dx--, T * -  dx on V = ( a , b ) ,  (2.7) 

+1 x =  b 
(2.8) O'T = - - 1  N = a  

where 

fsUaTOdS (uo)x=b-- (uo)x=,. (2.9) 

To introduce associated variational principles we rewrite equations (2.1)-(2.4) in canonical 
form by taking 

OH 
T o = u -  8u in V, (2.10) 

8H 
T * u = f ( o ) -  80 in V, (2.11) 

with 
aTO = qTOB on $1, (2.12) 
a*u = a*uB on $2, (2.13) 
a*u = b(o) on $3. (2.14) 

A suitable Hamiltonian H in equations (2.10) and (2.11) is given by 

H(u, (p) = �89 2 + F(O), (2.15) 
where 

F(O) = f ~~ (2.16) 

3. Variational Principles 

The variational significance of systems of equations of the form (2.10) and (2.11) was first ob- 
served by Noble (see [2] for discussion). Following the work of Arthurs [1, 2, 3, 4] on various 
boundary conditions we introduce an action functional I(U, cb) of the form 

i(v, ~) = iT Evr~ , -mv ,  ~,)]dv - is1 WT(~-o.)dS 

(3.1) 

=fv E(T* v),-/~(v, r + .(sl (~ V)o, dS 

+ .($2 [~(v-"")]*ds + fs3 [(o~V)*-m*)ldS 
by equation (2.5), where 

B(O) = j"P b(O)dO , 

and H(U, 4') is defined by equation (2.15). 

(3.2) 

(3.3) 
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It then follows that 

3(a). Variatiolml principle : For arbitrary independent functions U, q~ the functional I(U, ~b) 
is stationary at (u, (p), the solution pair of the boundary value problem described by equations 
(2.10)-(2.14). 

Next, we consider extremum principles, that is maximum and minimum principles, associated 
with our class of boundary value problems. 

3(b). First extremum principle: Using equation (3.1) we define a functional j(qs) as follows: 

J(q)) = I(U(@), (0), U(cb) = Tq) (3.4) 

where �9 is any admissible function which satisfies the condition 

ar~=arq~B on $1. (3.5) 

Then we see that 

J(q)) = ~v [�89 Ji2 (a*u")~dS -.(s3 B(q~)dS (3.6) 

= I(u, q ) ) + A J ,  (3.7) 
where 

db 

the bar over a derivative indicating that it is to be evaluated for some function q~ + t /(~-q)) ,  
0 < q  < 1. Equation (3.7) shows that J (~)  is stationary at (p. Further, if 

df(O) < 0 in V for all 0 (3.9) 
dO -= 

and 

db(O) < 0 on $3 for all 0 (3.10) 
dO = 

we see from equation (3.8) that 

AJ>O for all ,/, (3.11) 

and by (3.7) we have the global minimum principle 

l(u, ~o)____S(~) (3.12) 

for all admissible functions �9 satisfying condition (3.5). This result (3.12) is a global version [4] 
of the minimum principle given in [1, 2]. 

3 (c). Second extremum principle: Using equation (3.2) we define a functional G (U) as follows : 

G(U)= I(U, ~(U)), q~(U) - ~  f -I(T*U) in V (3.13) 
-(b-~(a*U) on $3 

where U is any admissible function satisfying the condition 

a*U = a*uB on $2. (3.14) 

Then we see that 

G(U) = fv{(T*U)f- t (T*U)- �89 + f (a~U)~~ 
S1 

+ fs~ {(a} U) b-~ (a} U) - B [b-~ (a} U) ] } dS (3.1 5) 

= I(u, q~)+AG, (3.16) 
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where 

dS}dV_ �89 fs3 db as AG = -�89 j T ( ( U - u ) 2 - ( S - ' ( T * U ) - q ~ ) 2 d ~  ~ 0.17) 

the bar over the derivatives again indicating that they are to be evaluated at some function 
u+rl(U-u),  0 < t / <  1, Equation (3.16) shows that G(U) is stationary at u. In addition, if the 
conditions 

and 

df(O)<o in V for a l l0  (3.9) 
dO = 

db(0) < 0 on $3 for all 0 (3.10) 
dO = 

are satisfied we see from equation (3.17) that 

AG < 0 for all U ,  (3.18) 

and so by equation (3.16) we have the global maximum principle 

G(U) < I(u, ~o) (3.19) 

for all admissible functions U satisfying condition (3.14). This result (3.19) is a global version 
[4] of the maximum principle given in [1, 2]. 

Since by (2.10) the exact u and q~ are related by u = T~p, it is useful in practice to consider U to 
have the form U = T7 j, where 7 j is an approximation to q~. Then from equation (3.15) we have 

G(T~) = fv {(T* TTJ) f - I (T  * T T t ) - � 8 9  • J(T * TTJ)]}dV 
/ 

+ JsQ (a* T~P)~o.dS + 3~s3 {(o'er TTOb- l(a~ TTO-  B[b- t(a* T~) ]  } dS (3.20) 

and by (3.19) we have 

G(T~P) < I(u, ~p) , 

for all ~/' satisfying, by (3.14), the condition 

a~T7 t = a~UB o n  S 2 . 

(3.21) 

(3.22) 

3(d). Dual extremum principles. From the results in 3(b) and 3(c) we have the global dual 
extremum principles [4] 

G(T~P) < I(u, ~p) < J(~) . (3.23) 

in the case when 

__df < 0 for all 0 (3.24) 
dO = 

db 
- -  _< 0 for all 0,  (3.25) 
d O -  

for all admissible functions ~ and 7-' such that 

aT~ = aTq~ on $1, (3.26) 
and 

a ~ T ~ =  a*uB on S 2 . (3.27) 

Equality holds in (3.23) when ~b and h v are both equal to the exact function ~0. This completes 
our summary of the relevant variational theory. 
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4. Problem I 

We now turn to applications of the foregoing variational results, and our first application is 
concerned with a nonlinear fin problem with constant base temperature and a radiating tip 
condition. A regular perturbation solution of thi s problem was obtained recently by Bilenas 
and Jiji [5]. This solution took into account the interaction of conduction with radiation and its 
accuracy was measured by comparison with a numerical solution. For certain values of the 
basic parameters the perturbation solution was rather poor [cf, 5, Fig. 1], and it is therefore of 
some interest to consider a variational approach to the problem. 

The problem is described by the nonlinear equations [5] 

d2q) - gq)4 + )~2 q) - gq)4 - )b2 q~ e 0 _ x < l  (4.1) 
dx 2 ' -- , 

~o(0) = 1, (4.2) 

dq~(1) _ ev [q~4(1)_ tp~] (4.3) 
dx 

where (p is the absolute temperature, ~ is the radiation-conduction parameter, 22 is the Biot 
modulus, v is a fin geometry parameter, and q~e is the temperature of the environment. 

5. Extremum Principles for Problem I 

Problem I corresponds to the following choices in the general theory: 

V : ( 0 , 1 ) ,  S l = { x = 0 } ,  S 2 = 0 ,  S 3 = { x = l } ,  (5.1) 

d T* d { + 1 at x = 1 
T d x '  d x '  a t =  - 1  x = 0  (5.2) 

f(cp) = - ~(p4 _)flq~ + eqo4 + 22 r (5.3) 

q~, = 1, (5.4) 

= (5.5) 
From (5.3) and (5.5) we see that 

df(O) 
- - 4 ~ 0 3 - 2  2 , (5.6) 

dO 

db(O) _ _4ev03 (5.7) 
dO 

and these are certainly nonpositive for all 0 > 0, since e, v and 22 are nonnegative parameters. 
We can therefore use the results of section 3(d) and obtain global dual extremum principles. 
The functional J is, from equation (3.6), given by 

J(+) = 

where 

V(~) = 

fl  {[�89 2 - -F(O)]  d x -  [B(~)]x= 1, 
0 

f '? 
~f(O)dO = - ~ - ~ 

(5.8) 

(5.9) 

fo io } B(O) = b ( O ) d O = - e v  • -  q ~  , (5.1o) 
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and 
�9 (o) = 1 .  (5.11) 

From equation (3.20) we find the functional G to be 

.;1 
G(T')  = { ( -T") f -~( -T") - �89  

o 

{ 4 e v (  T ' ~  
-TJ'(O)- 5 -  q)~- ev/ )~=~ (5.12) 

Here f - ~  (z) denotes the positive root x of the quartic 

ex" + 2 z x + ( z -  e~o 4 - 2 2 q~e) = 0.  (5.13) 

It follows from the theory of section 3 that the global dual extremum principles 

G(T') < I(u, r < J(~) (5.14) 

hold, provided the  trial functions �9 and 7 ~ are nonnegative. 

6. Calculations for Problem I 

We have performed calculations with trial functions of the form 

(b = 1 -/~1 [1 - ( 1 - x ) 2 J ,  (6.1) 

= 1 - # 2  [-1 - ( 1  -x )2 ]  , (6.2) 

where #1 and #2 were determined by optimizing the functionals J and G. The parameter values 
used were those adopted in [5], namely v=0.0208, ~0e=0.1, e=0.1, 0.2, 0.5 and 2=0.5, 1.0. 
The results of the variational calculation are given in Table 1. Since the upper and lower bounds 
J and G as well as the variational parameters p~ and Pz are close, we expect the variational solu- 
tion (6.1) to be quite accurate. 

In Table 2 we give the variational solution (6.1) for various values of x. This can be compared 

TABLE 1 

Variational parameters for problem 1. 

2 ~ ~2 G #1 J 

0.5 0.1 0.135 0.105383 '0.130 0.106038 
0.2 0.160 0.117209 0.155 0.118532 
0.5 0.225 0.147140 0.215 0.151085 

1.0 0.1 0.350 0.304178 0.335 0.310470 
0.2 0.360 0.309310 0.345 0.317137 
0.5 0.395 0.323336 0.370 ~336017 

TABLE 2 

Variational solution 4) of problem I. 

x 2 = 0.5 2 = 1.0 

~=0.1 e=0.2 e=0.5 ~=0.1 e=0.2 ~=0.5 

0.2 0.953 0.944 0.923 0.879 0.876 0.867 
0.4 0.917 0.901 0.862 0.786 0.779 0.763 
0.6 0.891 0.870 0.819 0.719 0:710 0.689 
0.8 0.875 0.851 0.794 0.678 0.669 0.645 
1.0 0.870 0.845 0.785 0.665 0.655 0.630 
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with the perturbation and numerical solutions of Bilenas and Jiji [5], and it is seen that the 
variational function (6.1) is much more accurate than the perturbation solution for the case 
2 = �89 and is comparable in accuracy for the case 2 = 1. 

One advantage of the variational approach is that it is not restricted, as the perturbation 
solution is, to small values of certain parameters. 

7. Problem II 

Our second application of the variational theory concerns the problem of the temperature 
distribution on the surface of space vehicles. A regular perturbation solution of this problem 
has been obtained by Hrycak [6], taking into account the direct solar radiation absorbed 
internally, and the energy lost internally and externally according to the Stefan-Boltzmann 
law, and its accuracy was measured by comparison with a numerical solution. For certain 
values of the basic parameters of the problem, the perturbation solution breaks down [cf. 6, 
Figs. 1 and 2], and it is therefore worth considering a variational approach to the problem. 

Following Hrycak [6] we take the boundary value problem described by the nonlinear 
equation 

d~o]~+6(O) cos 0 + fl (1+/3) @ = 0 ,  0<__0<7c (7.1) 
\-d~- + cot 0 )-0/ 4 4 - ' 

with boundary conditions 

d~(O) _ a~(~) _ 0 (7.2) 
dO dO " 

Here ~o is the dimensionless absolute temperature, c~ is the spacecraft skin conduction para- 
meters, fl is the relative internal radiation parameter, and 

6(0) = {01 101 > ~ /2 .101  ~ re/2, (7.3) 

We transform this problem by setting 

x = cos 0. (7.4) 

Then equations (7.1) and (7.2) become 

d { ( l_x2  ) _ ~ } =  a(x)_kq) 4 (7.5) 
dx 

do 
( l - x2 )  ~dxx = 0  at x = _ + l ,  (7.6) 

where 

k = (1 + fl)/4e, (7.8) 
with 

10 x_>O 6(x) = - ' (7.9) 
x < O .  

8. Extremum Principles for Problem I1 

Problem II corresponds to the following choices in the general theory" 

V = ( - 1 , 1 ) ,  $I--0, S 2 = { x = - l , x = + l } ,  $3=0 ,  (8.1) 

Journal of Engineerin 9 Math., Vol. 6 (1972) 331-339 



338 N. Anderson, A. M. Arthurs 

2~ d T * -  
T - - - ( l - x  )~dxx' 

+ ( l - x 2 )  + at x = l  

aT = --(1--X2) ~ at x = - - i  

f((p) = a(x)-kq~ 4 

i ~ k cp5 F(q0) = f(O)dO = a(x)cp- ~ , 

U B ~- O, 

From equation (8.4) we see that 

df(O) _ _4k03 , 
dO 

d 2 •  (8.2) 

(8.3) 

(8.5) 

(8.5) 

(8.6) 

(8.7) 

and this is nonpositive for all 0 > 0. (Since e > 0 and fl > 0 in this problem it follows from 
equation (7.8) that k > 0 holds.) We can therefore use the results of section 3 and obtain global 
extremum principles. By equation (3.6) the function J is given by 

= (8.8) 
- 1  

and by equation (3.20) we find the functional G to be 

f l 4 fx [a d{( 
- (X)+dxx 1 - x  2) d x j j  dx (8.9) G(TT`)_=_ _ k .  -1 (1--X2)(7` ')2dx ~ -1 

with 
0 - x 2 ) 7 ` ' = 0  at x =  + 1 .  (8.10) 

It follows from the theory of section 3 that the global dual extremum principles 

G(T70 < I(u, ~) ~ J(~) (8.11) 

hold, for all trial functions 4~ and 7' which are nonnegative. 

9. Calculations for Problem II 

We have performed calculations with trial functions of the form 

cb = 21 +22(x - x 3 / 3 ) +  )~3 (x 2 - �89 (9.1) 

71 = #1 + #2 (x - x3/3) + #3 (x 2 - �89 (9.2) 

where the parameters 2~, #i (i = 1, 2, 3) were determined by optimizing the functionals J and G. 
The parameter values o f t  and fi, which occur in equations (7.7) and (7.8), were those adopted by 
Hrycak [6], namely c~ = 0.25, 0.5 and fi = 0.0, 0.05, 1.0. The results of the variational calculation 
are given in Table 3. Since in this case the upper and lower bounds a" and G as well as the varia- 

T A B L E  3 

Variational parameters for problem 11. 

ct fl Pl  #2 #3 G 21 ')~ '~3 J 

0.25 0.0 0.97 0.38 0.18 - 1.860 0.97 0.38 0.10 - 1.827 
0.5 0.97 0.26 0.18 - 2 . 5 9 1  0.97 0.30 0.10 - 2 . 5 7 5  
1.0 0.97 0.20 0.16 - 3 . 3 5 3  0.97 0.24 0.12 - 3 . 3 4 4  

0.50 0.0 0.97 0.28 0.12 - 0 . 9 0 7  0.97 0.30 0.12 - 0 . 8 8 7  
0.5 0.97 0.20 0.12 - 1.280 0.97 0.24 0.10 - 1.271 
1.0 0.97 0.18 .12 - 1.666 0.97 0.20 0.10 - 1.660 
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tional parameters ,~i and #~ are close, we expect the variational solution to be reasonably ac- 
curate. 

In Table 4 we given the variational solution (9.1) at the points x = _ 1. These values can be 
compared with the perturbation and numerical solutions of Hrycak [6], and it is seen that at 
x = 1 (corresponding to 0 = 0) our variational solution is lower than the values given by Hrycak, 

TABLE 4 

Variational solution 4) of equation (9.1) of problem II. 

fi �9 (x = i) �9 (x = - i) 

0.25 0.0 1.27 0.76 
0.5 1.22 0.82 
1.0 1.19 0.87 

0.50 0.0 1.23 0.83 
0.5 1.18 0.86 
1.0 1.15 0.88 

while at x = - 1 (0 = n) our variational solution is in good agreement with the numerical solu- 
tion [6]. For  1 _< 0 _< ~ the perturbation solution fails entirely [6]. 
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